Natsuki Hosono, Takayuki R. Saitoh, Junichiro Makino
The smoothed particle hydrodynamics (SPH) method is a useful numerical tool for the study of a variety of astrophysical and planetlogical problems. However, it turned out that the standard SPH algorithm has problems in dealing with hydrodynamical instabilities. This problem is due to the assumption that the local density distribution is differentiable. In order to solve this problem, a new SPH formulation, which does not require the differentiability of the density, have been proposed. This new SPH method improved the treatment of hydrodynamical instabilities. This method, however, is applicable only to the equation of state (EOS) of the ideal gas. In this paper, we describe how to extend the new SPH method to non-ideal EOS. We present the results of various standard numerical tests for non-ideal EOS. Our new method works well for non-ideal EOS. We conclude that our new SPH can handle hydrodynamical instabilities for an arbitrary EOS and that it is an attractive alternative to the standard SPH.
View original:
http://arxiv.org/abs/1307.0916
No comments:
Post a Comment