Monday, October 22, 2012

1210.5246 (Nigel L. Mitchell et al.)

Collisionless Stellar Hydrodynamics as an Efficient Alternative to N-body Methods    [PDF]

Nigel L. Mitchell, Eduard I. Vorobyov, Gerhard Hensler
For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient, and relatively simple to implement. However when including the effects of gas physics, mesh codes are at a distinct disadvantage compared to SPH. Whilst implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh, has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. We propose the use of the collisionless Boltzmann moment equations as a means to model collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH AMR code. This approach, which we term "collisionless stellar hydrodynamics" enables us to do away with the particle-mesh approach. Since the parallelisation scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find the classic hydrodynamic equations and Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a spiral galaxy whose properties agree with those predicted by swing amplification theory. (Abridged)
View original: http://arxiv.org/abs/1210.5246

No comments:

Post a Comment