H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, H. Vahlbruch
In this work we report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, where GEO600 was performing an observational run together with the French/Italian Virgo detector. Then, after a short interruption, squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum could be applied for 90.2% (205.2 days total) of the time when science-quality data was acquired with GEO\,600. The average gain in sensitivity from squeezed vacuum application in this period was 26% (2.0dB), as measured in the frequency band from 3.7 to 4.0kHz, corresponding to a factor of two increase in observed volume of the universe. We show that the glitch-rate of the detector did not increase from squeezing application, confirming the long-term usability of squeezed states. Squeezed vacuum states of light have arrived as a permanent application.
View original:
http://arxiv.org/abs/1302.2188
No comments:
Post a Comment