V. Stamatescu, Y. Becherini, K. Bernllöhr, E. Carmona, P. Colin, C. Farnier, L. Gerard, J. A. Hinton, B. Khélifi, N. Komin, G. Lamanna, J. -P. Lenain, G. Maier, A. Moralejo, C. L. Naumann, R. D. Parsons, F. Di Pierro, H. Prokoph, S. Vorobiov, for the CTA Consortium
The Cherenkov Telescope Array (CTA) is a future instrument for very-high-energy (VHE) gamma-ray astronomy that is expected to deliver an order of magnitude improvement in sensitivity over existing instruments. In order to meet the physics goals of CTA in a cost-effective way, Monte Carlo simulations of the telescope array are used in its design. Specifically, we simulate large arrays comprising numerous large-size, medium-size and small-size telescopes whose configuration parameters are chosen based on current technical design studies and understanding of the costs involved. Subset candidate arrays with various layout configurations are then selected and evaluated in terms of key performance parameters, such as the sensitivity. This is carried out using a number of data analysis methods, some of which were developed within the field and extended to CTA, while others were developed specifically for this purpose. We outline some key results from recent studies that illustrate our approach to the optimization of the CTA design.
View original:
http://arxiv.org/abs/1211.3856
No comments:
Post a Comment