Tuesday, May 8, 2012

1205.1413 (Parisa Noorishad et al.)

Redundancy Calibration of Phased Array Stations    [PDF]

Parisa Noorishad, Stefan J. Wijnholds, Arnold van Ardenne, Thijs van der Hulst
Our aim is to assess the benefits and limitations of using the redundant visibility information in regular phased array systems for improving the calibration. Regular arrays offer the possibility to use redundant visibility information to constrain the calibration of the array independent of a sky model and a beam models of the station elements. It requires a regular arrangement in the configuration of array elements and identical beam patterns. We revised a calibration method for phased array stations using the redundant visibility information in the system and applied it successfully to a LOFAR station. The performance and limitations of the method were demonstrated by comparing its use on real and simulated data. The main limitation is the mutual coupling between the station elements, which leads to non-identical beams and stronger baseline dependent noise. Comparing the variance of the estimated complex gains with the Cramer-Rao Bound (CRB) indicates that redundancy is a stable and optimum method for calibrating the complex gains of the system. Our study shows that the use of the redundant visibility does improve the quality of the calibration in phased array systems. In addition it provides a powerful tool for system diagnostics. Our results demonstrate that designing redundancy in both the station layout and the array configuration of future aperture arrays is strongly recommended. In particular in the case of the Square Kilometre Array with its dynamic range requirement which surpasses any existing array by an order of magnitude.
View original: http://arxiv.org/abs/1205.1413

No comments:

Post a Comment