Mahmoud S. Mahmoud, Andrew Ensor, Alain Biem, Bruce Elmegreen, Sergei Gulyaev
New approaches for data provenance and data management (DPDM) are required
for mega science projects like the Square Kilometer Array, characterized by
extremely large data volume and intense data rates, therefore demanding
innovative and highly efficient computational paradigms. In this context, we
explore a stream-computing approach with the emphasis on the use of
accelerators. In particular, we make use of a new generation of high
performance stream-based parallelization middleware known as InfoSphere
Streams. Its viability for managing and ensuring interoperability and integrity
of signal processing data pipelines is demonstrated in radio astronomy. IBM
InfoSphere Streams embraces the stream-computing paradigm. It is a shift from
conventional data mining techniques (involving analysis of existing data from
databases) towards real-time analytic processing. We discuss using InfoSphere
Streams for effective DPDM in radio astronomy and propose a way in which
InfoSphere Streams can be utilized for large antennae arrays. We present a
case-study: the InfoSphere Streams implementation of an autocorrelating
spectrometer, and using this example we discuss the advantages of the
stream-computing approach and the utilization of hardware accelerators.
View original:
http://arxiv.org/abs/1112.2584
No comments:
Post a Comment