Peter Raffai, Gabor Szeifert, Luca Matone, Yoichi Aso, Imre Bartos, Zsuzsa Marka, Fulvio Ricci, Szabolcs Marka
We present an experimental opportunity for the future to measure possible
violations to Newton's 1/r^2 law in the 0.1-10 meter range using Dynamic
gravity Field Generators (DFG) and taking advantage of the exceptional
sensitivity of modern interferometric techniques. The placement of a DFG in
proximity to one of the interferometer's suspended test masses generates a
change in the local gravitational field that can be measured at a high signal
to noise ratio. The use of multiple DFGs in a null experiment configuration
allows to test composition independent non-Newtonian gravity significantly
beyond the present limits. Advanced and third-generation gravitational-wave
detectors are representing the state-of-the-art in interferometric distance
measurement today, therefore we illustrate the method through their sensitivity
to emphasize the possible scientific reach. Nevertheless, it is expected that
due to the technical details of gravitational-wave detectors, DFGs shall likely
require dedicated custom configured interferometry. However, the sensitivity
measure we derive is a solid baseline indicating that it is feasible to
consider probing orders of magnitude into the pristine parameter well beyond
the present experimental limits significantly cutting into the theoretical
parameter space.
View original:
http://arxiv.org/abs/1109.4258
No comments:
Post a Comment