Michael D. Johnson, Carl R. Gwinn
We derive the distribution of flux density of a compact source exhibiting strong diffractive scintillation. Our treatment accounts for arbitrary spectral averaging, spatially-extended source emission, and the possibility of intrinsic variability within the averaging time, as is typical for pulsars. We also derive the modulation index and present a technique for estimating the self-noise of the distribution, which can be used to identify amplitude variations on timescales shorter than the spectral accumulation time. Our results enable a for direct comparison with ultra-high resolution observations of pulsars, particularly single-pulse studies with Nyquist-limited resolution, and can be used to identify the spatial emission structure of individual pulses at a small fraction of the diffractive scale.
View original:
http://arxiv.org/abs/1207.2482
No comments:
Post a Comment