Catherine Turon, Xavier Luri, Eduard Masana
Hipparcos, the first ever experiment of global astrometry, was launched by
ESA in 1989 and its results published in 1997 (Perryman et al., Astron.
Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho
catalogues, ESA SP-1200, 1997). A new reduction was later performed using an
improved satellite attitude reconstruction leading to an improved accuracy for
stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys.
439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007).
The Hipparcos Catalogue provided an extended dataset of very accurate
astrometric data (positions, trigonometric parallaxes and proper motions),
enlarging by two orders of magnitude the quantity and quality of distance
determinations and luminosity calibrations. The availability of more than 20000
stars with a trigonometric parallax known to better than 10% opened the way to
a drastic revision of our 3-D knowledge of the solar neighbourhood and to a
renewal of the calibration of many distance indicators and age estimations. The
prospects opened by Gaia, the next ESA cornerstone, planned for launch in June
2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more
dramatic: a billion objects with systematic and quasi simultaneous astrometric,
spectrophotometric and spectroscopic observations, about 150 million stars with
expected distances to better than 10%, all over the Galaxy. All stellar
distance indicators, in very large numbers, will be directly measured,
providing a direct calibration of their luminosity and making possible detailed
studies of the impacts of various effects linked to chemical element
abundances, age or cluster membership. With the help of simulations of the data
expected from Gaia, obtained from the mission simulator developed by DPAC, we
will illustrate what Gaia can provide with some selected examples.
View original:
http://arxiv.org/abs/1202.3645
No comments:
Post a Comment