J. Billard, F. Mayet, D. Santos
Directional detection of Dark Matter is a promising search strategy. However,
to perform such detection, a given set of parameters has to be retrieved from
the recoiling tracks : direction, sense and position in the detector volume. In
order to optimize the track reconstruction and to fully exploit the data of
forthcoming directional detectors, we present a likelihood method dedicated to
3D track reconstruction. This new analysis method is applied to the MIMAC
detector. It requires a full simulation of track measurements in order to
compare real tracks to simulated ones. We conclude that a good spatial
resolution can be achieved, i.e. sub-mm in the anode plane and cm along the
drift axis. This opens the possibility to perform a fiducialization of
directional detectors. The angular resolution is shown to range between
20$^\circ$ to 80$^\circ$, depending on the recoil energy, which is however
enough to achieve a high significance discovery of Dark Matter. On the
contrary, we show that sense recognition capability of directional detectors
depends strongly on the recoil energy and the drift distance, with small
efficiency values (50%-70%). We suggest not to consider this information either
for exclusion or discovery of Dark Matter for recoils below 100 keV and then to
focus on axial directional data.
View original:
http://arxiv.org/abs/1202.3372
No comments:
Post a Comment