L. Eyer, P. Dubath, S. Saesen, D. W. Evans, L. Wyrzykowski, S. Hodgkin, N. Mowlavi
The measurement of the positions, distances, motions and luminosities of
stars represents the foundations of modern astronomical knowledge. Launched at
the end of the eighties, the ESA Hipparcos satellite was the first space
mission dedicated to such measurements. Hipparcos improved position accuracies
by a factor of 100 compared to typical ground-based results and provided
astrometric and photometric multi-epoch observations of 118,000 stars over the
entire sky. The impact of Hipparcos on astrophysics has been extremely valuable
and diverse. Building on this important European success, the ESA Gaia
cornerstone mission promises an even more impressive advance. Compared to
Hipparcos, it will bring a gain of a factor 50 to 100 in position accuracy and
of a factor of 10,000 in star number, collecting photometric,
spectrophotometric and spectroscopic data for one billion celestial objects.
During its 5-year flight, Gaia will measure objects repeatedly, up to a few
hundred times, providing an unprecedented database to study the variability of
all types of celestial objects. Gaia will bring outstanding contributions,
directly or indirectly, to most fields of research in astrophysics, such as the
study of our Galaxy and of its stellar constituents, the search for planets
outside the solar system.
View original:
http://arxiv.org/abs/1202.2064
No comments:
Post a Comment